
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

EISEVIER Journal of Pure and Applied Algebra 117& 118 (1997) 565-599 

Bounds for the Hilbert function of polynomial ideals 
and for the degrees in the Nullstellensatz 

Martin Sombra’ 
Departamento de Matemritica, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 

Abstract 

We present a new effective Nullstellensatz with bounds for the degrees which depend not 

only on the number of variables and on the degrees of the input polynomials but also on an 
additional parameter called the geometric degree of the system of equations. The obtained bound 

is polynomial in these parameters. It is essentially optimal in the general case, and it substantially 
improves the existent bounds in some special cases. 

The proof of this result is combinatorial, and relies on global estimates for the Hilbert function 
of homogeneous polynomial ideals. 

In this direction, we obtain a lower bound for the Hilbert function of an arbitrary homogeneous 
polynomial ideal, and an upper bound for the Hilbert function of a generic hypersurface section 
of an unmixed radical polynomial ideal. @ 1997 Elsevier Science B.V. 
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Introduction 

Let k be a field with an algebraic closure denoted by k, and let j-1,. . . , fs E 
01 , . . . ,x,] be polynomials which have no common zero in p. Classical Hilbert’s 

Nullstellensatz ensures then that there exist polynomials ~1,. . . , a, E k[xl, . . . ,xn] such 

that 

l-alfi +...+a,_&. 
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An e&tive Nullstellensatz amounts to estimate the degrees of the polynomials 

al,..., a, in one such a representation. An explicit bound for the degrees reduces the 

problem of effectively finding the polynomials al,. . , a, to the solving of a system of 

linear equations. 

The effective Nullstellensatz has been the object of much research during the last 

ten years because of both its theoretical and practical interest. The most precise bound 

obtained up to now for this problem in terms of the number of variables it and the 

maximum degree d of the polynomials fi, . . . , fs is 

degai< max{3,d}“, 1 <i<s. 

This bound is due to Kollar [22], and it is essentially optimal for d > 3; in the case 

when d = 2 a sharper estimate can be given [30]. 

Related results can be found in the research papers [2, 4, 7, 8, 12, 23, 29, 311, also 

there are extensive discussions and bibliography about the effective Nullstellensatz in 

the surveys [3,33]. 

Because of its exponential nature, this bound is hopeless for most practical appli- 

cations. This behavior is, in general, unavoidable for polynomial elimination problems 

when only the number of variables and the degrees of the input polynomials are con- 

sidered. 

However, it has been observed that there are many particular instances in which 

this bound can be notably improved. This fact has motivated the introduction of new 

parameters which enable to differentiate special families of systems of polynomial equa- 

tions whose behavior for the problem in question is polynomial instead of exponential 

[14,15]. 

In this spirit, we consider an additional parameter associated to the input polynomials 

fi, . . , fs, called the geometric degree of the system of equations, which is defined as 

follows. 

Suppose that k is a zero characteristic field and let fi, . . . , fs E k[xl, . . . ,x,] be poly- 

nomials such that 1 E (fi , . . . , fs). Then there exist gi,. . ,gs k-linear combinations of 

fi,. . .,fs and an integer t <s such that 1 E (gr,. ,gt), gr,. . . ,gt-1 is a regular se- 

quence, and (gi , . . . , gl_ I ) is a radical ideal for 1 5 i 5 t - 1. Let I$ g An(k) be the 

affine variety defined by gi, . . . , gi for 1 5 i < s, and set 

6 91....,9~ := max 
I<_iQnin{t,n}-I 

deg 6, 

where deg G stands for the degree of the affine variety q. Then the geometric degree 

of the system of equations S(f,, . . . , fS) is defined as the minimum of the 6,,,..,,. over 

all linear combinations of fi, . . . , fS satisfying the stated conditions. 

In the case when k is a field of positive characteristic, the degree of the system of 

equations f,, . . , fS is defined in an analogous way, by considering k-linear combina- 

tions of the polynomials {J,XjJ; ) 1 5 i 5 s, 1 _<j 5 n}. 
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In both cases, the existence of gt, . . . , gs satisfying these properties is a consequence 

of Bertini’s theorem. 

We obtain (Theorem 37): 

Theorem. Let fi,. . . , fs E k[xl, . . . , x,] be polynomials such that 1 E (fi, . . , fs). Let 
d := maxl<i+degfi, and let 6 be the geometric degree of the system of equations -- 
fi,. . . , fS. Then there exist polynomials al,. . ,a, E k[xl,. . .,x,1 such that 

l=alfi +...+a,f, 

with deg ai fi I min{n,s}‘(d + 3n)6 for i = 1,. ,s. 

We also obtain a similar bound for the representation problem in complete intersec- 

tions (Theorem 36). 

Let d := maxi<i<s degfi. Then we have that 

s(fi,...,fs)F(d + l)min’s+’ 

holds and so our bounds for the effective Nullstellensatz and for the representation 

problem in complete intersections are essentially sharp in the general case. We remark 

however that they can substantially improve the usual estimates in some special cases 

(see Example 39). 

Similar bounds for the effective Nullstellensatz have also been recently obtained by 

algorithmic tools [ 15, Theorem 193, [14, Section 4.21 and by duality methods [24]. 

The proofs of these bounds are combinatorial, and they rely on global estimates for 

the Hilbert function of certain polynomials ideals. 

The study of the global behavior of the Hilbert function of homogeneous ideals is of 

independent interest. It is related to several questions of effective commutative algebra, 

mainly in connection with the construction of regular sequences of maximal length 

with polynomials of controlled degree lying in a given ideal [lo], and to transcendental 

number theory, in the context of the so-called zero lemmas [5]. 

Let I C k[xo, . . . , xn] be a homogeneous ideal. We understand by the dimension of I 
the dimension of the projective variety that it defines, and we denote by h, its Hilbert 

function and by deg I the degree of the ideal I. 
The problem of estimating h, was first considered by Nesterenko [28], who proved 

that for a zero characteristic field k and a homogeneous prime ideal P C k[xo,. . .,x,1 

of dimension d > 0 the following holds: 

(mi:: ‘) - (,wd,~~d+l) <h,=(m)< degP(4m)d, m21. 

Later on, Chardin [lo] improved Nesterenko’s upper bound by simplifying his proof, 

and obtained that for a perfect field k and a homogeneous unmixed radical ideal 
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12 k[xo,. . . , x,] of dimension d 2 0 the following inequality holds: 

, m21. 

This estimate has also been obtained by Kolli, by using cohomological arguments 

UN 
In this direction, we obtain a lower bound for the Hilbert function of an arbitrary 

homogeneous polynomial ideal of dimension d 2 0 (Theorem 4). We have that 

holds. This result generalizes the bound of Nesterenko for the case of a homogeneous 

prime ideal P & k[xo, . . . , x,]. It is optimal in terms of the dimension and the degree of 

the ideal I. 

We present also an upper bound for the Hilbert function of a generic hypersurface 

section f of a homogeneous unmixed radical ideal I C k[xo, . . . ,x,J of dimension d 2 1 

(Theorem 22). We have the inequality 

h(l,f)(m) I3 degfdeg1 (mz”r ‘), mz5ddegI. 

Our approach to the Hilbert function is elementary, and yields a new point of view 

into the subject which is clearer than that of the previous works. We hope that 

our techniques would also be useful for treating arithmetic Hilbert functions 

(see [28]). 

We shall briefly sketch the relationship between these bounds for the Hilbert func- 

tion, and the effective Nullstellensatz and the representation problem in complete inter- 

sections. 

Let fi,...,fse&i,. . . ,x,1 be a regular sequence. There are several effective- 

ness questions about this set of polynomials which can be easily solved in the case 

when the homogenization of these polynomials f;,. . ., fz E k[xo,. ..,x,] is again a 

regular sequence. An example of this situation is the effective Nullstellensatz, for 

which there exists a simple and well-known proof in this condition (see, for 

instance, [26]). 

The central point in our proof of the effective Nullstellensatz consists then in showing 

that the regular sequence fi, . . . , fs E k[xl , . . . ,x,,] can, in fact, be replaced by polyno- 

mials pl,...,psEk[xl , . . . ,x,J of controlled degrees such that (fi, . . , f;) = (PI,. . . , pi) 
for 1 < i 5 s, and such that the homogenizated polynomials &, . . . , jjs define a regular 

sequence in k[xo, . . . ,x,,]. The proof of this result proceeds by induction, and the bounds 

for the Hilbert function allows us to control at each step 1 < i < s the degree of the 

polynomial p,. 
The spirit of our proof follows Dubt’s paper on the classical effective Nullstellensatz 

[ 1 I]. We remark here that there are many errors in Dubt’s argument, and a serious gap, 

for it relies on an assumption on the Hilbert function of certain class of homogeneous 
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polynomial ideals [ 11, Section 2.13 which is unproved in his paper and which is neither 

in the literature, as it was noted by Almeida [l, Section 3.11, and so his proof should 

be considered incomplete as it stands. 

Our approach allows us not only to avoid DubC’s assumption and to prove the results 

stated in his paper, but also to obtain our more refined bounds. 

Finally, we remark that our exposition is elementary and essentially self-contained. 

The exposition is divided in four parts. In Section 1 we state some well-known 

features of degree of projective varieties and Hilbert function that will be needed in 

the subsequent parts, and we prove some of them when suitable reference is lacking. In 

Section 2 we prove the lower and upper bounds for the Hilbert function and analyze the 

extremal cases. In Section 3, we apply the obtained results to the construction of regular 

sequences. In Section 4 we consider the consequences for the effective Nullstellensatz 

and for the representation problem in complete intersections. 

0. Notations and conventions 

We work over an arbitrary field k with algebraic closure k. As usual, P” and A” 

denote the projective space and the afiine space of dimension n over It. A variety is 

not necessarily irreducible. 

The ring k[xo,. . . ,x,] will be denoted alternatively by R or Rk. 

Let Z & k[xo, . . . , x,] be a homogeneous ideal. We understand by the dimension of Z 

the dimension of the projective variety that it defines and we shall denote it by dimI, 

so that dimZ = dimhI Z - 1. 

Let J c k[xl , . . . ,x,,] be an affine ideal. We shall understand by the dimension of .Z 

its Km11 dimension. At each appearance, it will be clear from the context to which 

notion we are referring to. 

An ideal I L k[xo, . . ,x,] is unmixed if its associated prime ideals have all the same 

dimension. In particular, Z has not imbedded associated primes and its primary decom- 

position is unique. 

Given an ideal I C k[xo, . . . ,xJ, then Ze := k @k Z C k[xo, . . . ,x,] is the extended ideal 

of Z in k[xo,...,xJ. 

Given Z C Rk a homogeneous ideal, then V(Z) := {x E P” 1 f(x) = 0 V’ E I} & P” 

denotes the projective variety defined by I. Conversely, given a projective variety 

VC P” we define the ideal Zk(V) := {f ERk 1 f]v E 0) CRk, and we denote by 

Z(V) := Zi( V) C %[xo, . . .,x,1 the defining ideal of V. 

Given a graded R-module M and m E Z, M,,, denotes the homogeneous part of 

degree m. 

Let be given a homogeneous ideal Z c k[xo, . . . , x,]. The Hilbert function or char- 

acteristic function hl of the ideal Z is defined as 

m H dimk(k[Xo,. . ,x,]/Z),. 

Given a projective variety V 2 P”, hV is the Hilbert function of Z(V). 
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Given fEk[xo,..., x,J a homogeneous polynomial, f” E k[xt , . . . ,x,J is its affiniza- 

tion and given I C k[xe,. . . ,xn] a homogeneous ideal, la C @xl,. . . ,x,J is its 

affinization. 

Conversely, given a polynomial g E k[nt , . . . ,x,1, g E k[xo, . . . ,xn] is its homogeniza- 

tion, and given an ideal J C k[x,, . . J,], we denote by J C k[xo,. . .,x,1 its homo- 

genization. 

1. Preliminaries on degree and Hilbert function 

In this section we state some well-known properties concerning the degree of 

a variety and the Hilbert function of a homogeneous polynomial ideal which will 

be needed in the sequel. Also we shall prove some of them when suitable reference is 

lacking. 

Let V C P” be an irreducible projective variety of dimension d. The degree of V is 

defined as 

degV :=sup{#(VflH117...nHd)(H,,...,Hd~~” hyperplanes 

and dim(VflH, fI...n&)=O}. 

This number is finite, and it realizes generically, if we think the set {(HI,. . .,Hd) 1 

HI,. . . , Hd c P” hyperplanes} as parameterized by a nonempty set of A(“+‘jd [ 17, Lec- 

ture 181. We agree that deg 0 = 1. 

The notion of degree can be extended to possible reducible projective varieties fol- 

lowing [19]. Let V C P”, and let V = lJc C be the minimal decomposition of V in 

irreducible varieties. Then the (geometric) degree of V is defined as 

degV := CdegC 
C 

For this notion of degree the following B&out’s inequality without multiplicities for 

the degree of the intersection of two varieties holds. Let V, WC P” be varieties. Then 

deg(Vn W)< degVdegW. 

This is a consequence of Bezout’s inequality for affine varieties [19, Theorem 11. The 

details can be found in [9]. This result can also be deduced from the Bezout’s theorems 

[13, Theorem 12.31, [34, Theorem 2.11. 

We turn our attention to the Hilbert function of a homogeneous ideal. Let Z C 

k[xo, . ,x,J be a homogeneous ideal of dimension d. There exists a polynomial p~dJ[t] 

of degree d, and mo E Z such that 

Mm) = Mm) 

for m > mo. The polynomial pi is called the Hilbert polynomial of the ideal I. 

The degree of a homogeneous ideal I c k[xo, . ,x,] can be defined through its Hilbert 

polynomial. 
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Let I 2 k[xo, . . . , x,] be a homogeneous ideal of dimension d, with d 2 0. Let p[ = 
adtd + . . . + a0 E Q[t] be its Hilbert polynomial. Then the (algebraic) degree of the 

ideal I is defined as 

degl := d!ad E N 

If I C k[xo , . . . ,x,1 is a homogeneous ideal of dimension -1, then I is a (x0,. . .,x,)- 

primary ideal, and the degree of I is defined as the length of the k-module 

k[xo,..., x,1/Z, which equals its dimension as a k-linear space. We also agree that 

deg k[xo, . . . ,x,1 = 0. 

Given I C k[xo,. . . ,xn] a homogeneous ideal, we denote by irrl’ the number of irre- 

ducible components of V(Z) & P”. 

Let I, J G k[xo,. . . ,x,1 be homogeneous ideals. Then we have the following exact 

sequence of graded k-algebras: 

O+R/(InJ)-R/Z@R/J-+R/(Z+J)-,O 

from where we get that 

hdm) = Mm) + h(m) - h+&), m>l 

holds. In particular, if dim I > dim J, then deg(Z n J) = deg1. 

Let k be a perfect field, I C_ k[xo,. . .,x,1 an homogeneous radical ideal, and let 

I = np P be the minimal primary decomposition of I. In this situation we have 

that 

degI= c deg IV) 
P : dim P=dim I 

holds [34, Proposition 1.491, [17, Proposition 13.61, and thus the degree of the ideal 

I may be calculated from the degrees of the varieties defined by its associated prime 

ideals of maximal dimension. 

Let I C k[xo, . . . , x,] be a homogeneous radical ideal, and I = np P the minimal 

primary decomposition of I. From the canonical inclusion of graded modules R/I - 

ep RIP, we deduce that 

Mm) I C Mm), m 2 1. 
P 

Let I C k[xo,. . . ,x,] be a homogeneous ideal, and le 2 k[xo,. . .,x,1 be the extended 

ideal. Let R/Z = $, (R/I), be the decomposition of k[xo,. . .,x,1/1 into homogeneous 

parts. Then we have that (RL/I”)~ =k c3.k (R/Z), holds and so hIC(m)=h(m), i.e. the 

Hilbert function is invariant under change of the base field. In particular deg le = deg I. 

We have also that there exist ~0,. . . , yd E k[xo, . . . ,x,1 algebraically independent 

linear forms such that k[yc,. . . , yd] - &[xo, . . ,x,] /Ze is an inclusion of k-algebras, 
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and so 

. 

We shall need the following identity for the combinatorial numbers. 

Lemma 1. Let d>O, D> 1, mEH. Then 

Proof. The case D = 1 is easy. In the case when D > 1, we have that 

We shall also make appeal to Macaulay’s characterization of the Hilbert function of 

a homogeneous polynomial ideal. 

Given positive integers i, c, the i-binomial expansion of c is the unique expression 

_(‘ri’) +...+ (c:“) 

with c(i) > ... > c(j)Lj> 1. 

Let c = (‘y]) + . . . + (“‘I)) be the i-binomial expansion of c. Then we set 

8) := (cy$) +...+ (‘y/g 

We note that this expression is the (i + 1 )-binomial expansion of cli). 

Remark 2. Let b, c, i E Z,O. Then it is easily seen that b 2 c if and only if 

(b(i), . . , b(j)) is greater or equal that (c(i), . . . , c(j)) in the lexicographic order, and 

thus b 2 c if and only if b(‘) > c(j). - 

We recall that a sequence of nonnegative integers (ei)iEz,, is called an O-sequence if _ 

co= 1, c,+] 5 c!‘) I ’ i> 1 

We then have: 
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Theorem (Macaulay, [16]). Let h : ZOO -+ Z~O. Then h is the Hilbert function of 

a homogeneous polynomial ideal if and only if 

(h(i))iELZo 

is an O-sequence. 

2. Bounds for the Hilbert function 

In this section we shall derive both lower and upper bounds for the Hilbert function 

of homogeneous polynomial ideals. These estimates depend on the dimension and on 

the degree of the ideal in question, and eventually on its length. 

We derive first a lower bound for the Hilbert function of an arbitrary homogeneous 

polynomial ideal. 

We consider separately the case when dim I = 0. 

Lemma 3. Let I C k[xo,. . . , x,] be a homogeneous unmixed ideal of dimension zero. 

Then 

hAm) > m + 1, degI-2>m>O, 

h,(m) = degZ, rn> degl- 1. 

Proof. We have that le & k[x 0,. . . ,x,] is an unmixed ideal of dimension zero [35, 

Ch. VII, Theorem 36, Corollary 11. As ,& is an infinite field, there exists a linear form 

U E k[&), . . . ,x,1 which is a nonzero divisor modulo le. Then 

h,(m) - hl(m - 1) = hIe(m) - h,.(m - 1) = hy.,u)(m). 

Let mo be minimum such that hre(m) = degIe = degl for m > mo. Then hcl.,u)(m) 2 1 

for 0 < m 5 mo - 1 and hcre,u)(m) = 0 for m > mo, and thus we have that 

hI(m)=h,e(m)>m+ 1, degl-2>m>O 

holds, and also hI(m)=hre(m)= degl for m 2 degl - 1. 

Theorem 4. Let I C k[xo,. . . ,x,1 be a homogeneous ideal of dimension d, with d L 0. 

Then 

Proof. Let Ze = &, Qp be a minimal primary decomposition of Ze, and let 

P : dim &dim Ie 
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be the intersection of the primary components of le of maximal dimension, which is an 

unmixed ideal of dimension d. Then IQ(~) = hp(m) > h,*(m) for m 2 1, and we have 

that deg I = deg IT We shall proceed by induction on d. Consider first the case d = 0. 

We then have that 

h,(m)=hp(m)>hp(m)~ (“: ‘) - (,‘,” ‘), m> I 

holds, by Lemma 3 applied to Z! 

Now let d 2 1. Let u E &a , . . . ,x,] be a linear form which is not a zero-divisor 

modulo Z? Then we have that 

h,*(m) - hp(m - l)=h(~,~)(m). 

Then dim(Z, u) = d - 1 and deg(I*, U) = deg I* = deg I. By the inductive hypothesis 

we have that 

h-(m) - b(m - l>=h(~*,,)(m)L (“id) - (m-dedgl+d), mzl 

holds. Then 

hi(m) 2 hp(m) = 2 h j=. u*,u,(j) L g { (‘; “) - (i - dedgz + “)} 

by Lemma 1. 0 

This inequality extends Nesterenko’s estimate for the case of a prime ideal 

[28, Section 6, Proposition l] to the case of an arbitrary ideal. 

Remark 5. By Gotzmann’s persistence theorem [ 161 we have that for a homogeneous 

ideal I C k[xo,. . . ,x,] of dimension d there exists mo E Z such that 

as it is noted in [6, Remark 0.61. Our theorem shows that this inequality holds globally, 

not only for big values of m. 

Given I C k[xo,. . . ,x,1 an homogeneous ideal of dimension d > 0, let HI(~) := 

C,“=, hf(m) t”’ denote its Hilbert-P oincare series. Then the previous result states 
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1 _ tdegl 

Wt) 2 (1 _ ty+2 

in the sense that the inequality holds at each term of the power series. 

This estimate is optimal in terms of the dimension and the degree of the ideal 1. 

The extremal cases correspond to hypersurfaces of linear subspaces of P”. This can be 

deduced from [6, Corollary 2.81, which in turn depends on Gotzmann’s theorem, but 

it can also be proved in an elementary way [32, Proposition 2.341. 

We devote now to the upper bounds. In this respect we have two different estimates. 

The first bound is sharp for small values and the second for big ones. 

The first upper bound will be deduced from a series of results and observations. 

Definition 6. Let V c P” be a variety. Then the linear closure of V is the smallest 

linear subspace of P” which contains V, and it is denoted by L(V). 

Remark 7. Let E C P” be a linear space. Then its defining ideal Z(E) CR, is generated 

by linear forms, and it is easy to see that 

dimE=n - dim,Z(E)i. 

Let V C_ P” be a variety, and let L E Rg be a linear form. Then L(v z 0 if and only if 

L[L(v) = 0, and thus I(L( V)) = (I( V), ). In particular, we have that 

hv(l)=n f 1 - dimiI(V)i = dimL(V)+ 1. 

The following proposition shows that the dimension of the linear closure is bounded 

in terms of the dimension and the degree of the variety. It is a consequence of Bertini’s 

theorem [21, Theorem 6.31. A proof can be found in [ 17, Corollary 18.121. 

Proposition 8. Let V 2 P” be an irreducible variety. Then 

dimL(V)+lL degV+dimV. 

The following is an estimate for the degree of the image of a variety under a regular 

map. It is a variant of [20, Lemma l] and [30, Proposition 11. 

Proposition 9. Let V C P” be a variety and fo,. . . , fN E t&q,, . . ,x,1 homogeneous 
polynomials of degree D which define a regular map 

cp : P” + P, 

x := (xg : . . . : x,) I-+ (f&z) : . . . : fN(X)). 

Then deg cp( V) 5 deg V Ddim 7 
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Proof. We can suppose, without loss of generality, that V is irreducible. Let d := 

dim cp( V), and let HI,. . ,Hd C P” be hyperplanes such that 

#(q(V)nH, fI...fIHd)= degq$V). 

For each i = 1,. . ,d, let Li E R, be a linear form such that Hi = {Li = 0). Then 

#(q(V)nH, n ... fIHd) is bounded by the number of irreducible components of 

cp-‘(cp( V) n HI II . . . n Hd) and so we have that 

#(cp(V)nH, n ... nHd) 2 degcp-i(cp(V)nHi n ... fl&) 

Vnh V(Li(fo,...,fh)) 5 deg VDd 
\ i=I / 

holds, by B&out’s inequality. We then have that deg cp( V) < deg V Ddim ’ 

dim cp( V)< dim V. Cl 

Now it follows easily the desired inequality for the case of an irreducible 

holds, as 

variety. 

Proposition 10. Let V c P” be an irreducible variety of dimension d, with d 2 0. 

Then 

h”(m)5 deg Vmd +d, m2 1 

Proof. For rz,m E N, let 

ain . . p” + p(“inm), (x0 : . . . : xn) I-+ (x(‘)),.,= I m 

be the Veronese map of degree m. Then u,(~ : V H v,(V) is a birregular morphism of 

degree m, and so we have that 

h,rr(&) =Mmk), k L 1 

In particular, we have that 

hv(m)=hum(q(l)= dimL(V)+ 1 

holds, by Remark 7, and so 

hv(m) 5 deg a,( V) + dim u,(V) < deg V md + d 

by application of Propositions 8 and 9. 0 

We can extend this bound to the more general case of an unmixed radical ideal in 

Nxo,. . . >&zl. 
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Theorem 11. Let k be a perfect field, and let I2 k[xo,. . . ,x,,] be a homogeneous 
unmixed radical ideal of dimension d, with d 2 0. Then 

hI( degImd +irrZd, ml 1. 

Proof. Let Ze CR, be the extended ideal of I in Rc. Then Ze is an unmixed radical 

ideal of dimension d [35, Ch. VII, Theorem 36, Corollary 11, [27, Theorem 26.31. Let 

le = n$’ be the minimal primary decomposition of le. Then we have that 

holds, from where 

h(m) 5 c (deg V(P) md+d)=degImd+irrId, m>l 
P 

by Proposition 10. 0 

This inequality has the same order of growth of hl. We see also that it does not 

improve the estimate 

which follows from Chardin’s arguments [lo]. 

From the asymptotic behavior h,(m) w(degl/d!)md we see that this inequality is 

sharp for big values of m only when d = 1. In this case, the inequality is optimal 

in terms of the degree and the length of the ideal, and we determine the extremal 

cases. 

Definition 12. Let V, W C P” be varieties. Then V, W are projectively equivalent if 

there exists an automorphism A E PGL,+i(k) such that W =A( V) [17, p. 221. 

Remark 13. Let V, W C P” be varieties. Then V, W are projectively equivalent if and 

only if its coordinated rings i[V], L[W] are isomorphic as graded k-algebras. In par- 

ticular, their Hilbert function coincide. 

A curve C C p” is called a rational normal curve if it is projectively equivalent 

to v,(p’ ). Then C is nondegenerated, i.e. L(C) = [FD” [17, Example 1.141, and its de- 

gree is n. By Proposition 8 the degree of C is minimum with the condition of being 

nondegenerated. In fact, rational normal curves are characterized by this property [17, 

Proposition 18.91. 

Now let /,n~ N, 6=(6i,... ,~,)EN’ suchthat (6(:=6,+...+61In+l-l.For 

l<j<l, let nj:=& +.. ’ + Sj + j, and consider the inclusion of linear spaces given 
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bY 

ii: ph, cf P”, 
/ c T 

(x0: . . . :q)f+(O: . . . :o :x0: . . . :xs,:o: . . . :O). 

The linear subspaces ii C P’” are disjoint one from each other. Let 

C(lZ,d):= (J ij(Ua,(Pl))CP”. 

j=l 

A curve C C P” is projectively equivalent to C(n, S) if and only if there exist disjoint 

linear subspaces El,. . . , Elc P” such that dim Ej = Sj, C C Uj Ej, and 

Ci:=CnEjcEj 

is a rational normal curve for 1 <j 5 1. 

Definition 14. Let V C P” be a variety. Then V is defined over k if Zi( V) =k @k 

MU c 6x0 , . . ,x,1, i.e. if its defining ideal is generated over k. 

The following lemma is well known; we prove it here for lack of suitable reference. 

Lemma 15. Let cp : P” + PN be a regular m a dejined over k, V L P” be a variety p 

dejined over k. Then cp( V) 2 PN is dejned over k. 

Proof. We have the following commutative diagram: 

k[ro,...JN] 
9; 

’ WI 

with ker (pt =Zk( W) and ker ‘pf =Ii( W). We have that k @k k[V] % k[V], as V is de- 

fined over k, and tensoring with i we get 

_ I( 
kbo,. . ,xN] 
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with ker i @k (pi = k 8.k Zk( W), from where we deduce that Zi( w> = k @k Zk(w) holds, 

i.e. Ii(W) is defined over k. 0 

The Veronese map v, : IFD’ + P” is defined over k. Then v,( P’ ) is defined over k, 

by the preceding lemma. We have that 

is the minimal decomposition of C(n,6) in irreducible curves. Thus, C(n,6) is also 

defined over k, and so 

Lemma 16. Let V, WC P” be varieties. Then 

if and only if V, W lie in disjoint linear subspaces of P”. 

Proof. Given V, W C P” varieties, they lie in disjoint linear subspaces if and only if 

L(v)nL(w)=B. 

Let LV : = Z(L( V)), Lw : = Z(L(W)). By Remark 7 we 

and Zw==(Z( W)l) &Z(W) holds. In particular, Ly, Lw 

and so 

Ly +Lw=Z(L(V)rlL(W)). 

have that Lv = (I( V)l ) C_ I( V) 

are generated by linear forms, 

Let be given varieties V, W C P” such that L(V) nL( W) = 0. Then 

Lv +Lw=(xo,...,x,) 

and so Z(V)+Z(W)=&,,..., x,,). Conversely, suppose that Z(V) +I( W) = (x0,. . .,x,). 

Then 

xo,...,x,EZ(V)1 +z(w)l. 

Thus, Lv +Lw=(xo,..., xn) and so L(V)nL(W)=@l. 0 

Proposition 17. Let k be a perfect jield, and let Z c k[xo,. . .,x,1 be a homogeneous 
unmixed radical ideal of dimension one. Then 

hi(m)= deg Im+irrI, m>l 
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if and only if there exists 6 E N’ with 1: = irrl, such that 161= degI, and a curve 

C C P” deJined over k projectively equivalent to C(n, 6) such that I = Ik(C). 

Proof. Let C C $” be a curve defined over k, projectively equivalent to C(n, 6) for 

some 6 E k4’ and I = irr I. Then i @k Ik(C) = Ii(C), and so 

k&(C) = irrI(C(n,S)) = I, degIk(C) = degI(C(n,b)) = (61. 

We aim at proving that 

&(c)(m) = j61m + I, m 2 1 

We have that /~(c)(m)= he(m)= hcc,,s,(m) and so it suffices to prove that 

hc(n,a)(m) = IdIm + I, m 2 1. 

We shall proceed by induction on 1. Let C d : = vd(Pl). We have the inclusion of graded 

k-algebras 

* 
i[Cd] = k[xo , . . . &l/I(G) z &, Yl, ,q k&y+ 

We then have that &Cd] E @,EO i[x, y]dj holds, from where hcd(m) = dm+ 1 for m 2 1, 

and so the assertion is true for 1 = 1. Let 1~ 1, and let C(n, 6) = Uj Cj be the minimal 

decomposition of C(n, 6) in irreducible curves. Then Ci U . . . U Cl-l, and Cl lie in 

disjoint linear spaces, and so 

I(C] u . . . UCr-l)+I(C/)=(xo,...,x,) 

by Lemma 16. We then have that 

hc(m)=hc,u...uc,_,(m) + k,(m), m>l 

holds, and from the inductive hypothesis we get 

hc(m)={(61 +...+61_l)m+(l- 1)}+(6~m+1}=]6~m+1, m>l. 

Now we shall prove the converse. We have that Ie is a radical ideal, and so Ie is the 

ideal of some curve C C IFD” defined over k. 
We shall proceed by induction on I := irr I, Let I= 1, i.e. C G P” irreducible. Then 

dimL(C)=hc(l) - 1= degC 

and so C C: I(C) is a nondegenerated irreducible curve of minimal degree. We then 

have that C CL(C) is a rational normal curve [ 17, Proposition 18.91. 

Let I> 1, and suppose that the assertion is proved for Z(I) 5 I- 1 and K an arbitrary 

field. In particular, it is proved for k, the algebraic closure of k. Let C = Ci U. . . U Cl 

be the minimal decomposition of C in irreducible curves. Then 

hc(m)=hc,“...uc,_,(m)+hc,(m)-hr(c,”...”c,-,)+r(s)(m), m> 1 
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We deduce from Theorem 11 that 

he,(m) = 6/m + 1, 

hc,u...~c,_,(m)=(6i +...+6t_l)rn+(l- 1) 

and so Cl 2 L(C[) is a rational normal curve, and by the inductive hypothesis Ci U 
. . . U Cl- 1 is projectively equivalent to C(n, (deg Cl,. . . , deg Cl- 1)). Thus, 

Mm) = I+ + l - hl(C,U...UC,_,,,l(C,,(rn), m>l 

from where 

Z(C, u .*. uc,_,)+z(c~)=(x~ )...) x,) 

Then Ci U . . . U Cl- 1, and Cl lie in disjoint linear spaces, by Lemma 16, and so C is 

projectively equivalent to C(n, (deg Cl,. . . , deg Cl)). 0 

Now, we shall derive another upper bound for the Hilbert function of an unmixed 

radical ideal. The following lemma is well known; we prove it here for lack of suitable 

reference. 

Lemma 18. Let A be an integrally closed domain, K its quotient jield, L a jinite 

separable extension of K, B the integral closure of A in L. Let n E B such that 
L = K[n], and let f E A[t] be its minimal polynomial. Then 

f’(v)B 2 4~1 

Proof. Let A4 CL be an A-module. Then 

M’ := {x EL 1 Trf;(xM) 2 A} 

is called the complementary module (relative to the trace) of M [25, Ch. III, Section 11. 

It is straightforward that if M C B then M’ > B. We have that 

A[rll 
A[?]‘= m 

holds [25, Ch. III, Proposition 2, Corollary], and so B C A[n]’ = A[n]/f’(n). 0 

In the language of integral dependence theory, the last assertion says that f’(q) lies 

in the conductor of B in A[n]. 0 

Theorem 19. Let k be a perfect field, and let I C k[xo,. . . ,x,1 be a homogeneous 
unmixed radical ideal of dimension d, with d 2 0. Then 

Proof. We shall consider first the case when P G k[xo,. . .,x,1 is a homogeneous prime 

ideal. 
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The field i is algebraically closed, and so it is both infinite and perfect. Let 70,. . . , yd, 

ye l k[x~,...,.x~] be linear forms such that 

GYO ,..., yd]') ~[~O,...,-%l/~ 

is an integral inclusion of graded k-algebras, and such that if K, L are the quotient 

fields of i[yo, . . . , Yd], ~[xo, . . . ,x,1/P, respectively, then K - L is separable algebraic 

and L = K[q]. 

Let A : = k[yo,. . . , yd], B : = k[Xo,. . .,x&P. As a consequence of Krull’s Hauptide- 

alsatz we have that 

where F E k[Yo, . , Yd][t] is a nonzero homogeneous polynomial. We then have that 

dimi(a[.]),=h,,,(~~=~~~~l)-(~-dedg=:d’l). 

We also have that A[q] of B c--f A[q]/F’(ty) holds, by Lemma 18, and thus 

m-degF+d+l 

(“:“:‘)-( d+1 )i 

We deduce that deg F = deg P, and so 

Now we extend this bound to the case of an unmixed ideal. We have that Ie is and 

unmixed radical ideal. Let Ze = npP be the primary decomposition of le. We have 

that 

Then. we have that 

Remark 20. This inequality is sharp for big values of m, as it is seen by comparing 

it with the principal term of the Hilbert polynomial of I. 
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From the expression 

we see that it does not improve Chardin’s estimate [lo] 

in any case. However, we remark that the proof is simpler and that we can use it in 

our applications instead of Chardin’s estimate obtaining very similar results. 

Let k be a perfect field, I C k[xo, . . . ,x,1 an homogeneous unmixed radical ideal of 

dimension d > 0, and let HI denote its Hilbert-Poincare series. Then the previous result 

states that 

1 _ &I 
tdeg’-‘H,(t) I (1 _  t)d+2 

in the sense that this inequality holds at each term of the power series. 

We derive an upper bound for the Hilbert function of a generic hypersurface section 

of an unmixed radical ideal, which need not be unmixed nor radical. This result is an 

application of both our upper and lower bounds for the Hilbert function. The use of our 

upper bound (Theorem 19) can be replaced by Chardin’s estimate [lo] but the bound 

so obtained is essentially the same. In this way we keep our exposition self-contained. 

Lemma 21. Let k be a perfect field, and let I C k[xo, . . .,x,1 be a homogeneous un- 

mixed radical ideal of dimension d, with d 2 1. Let y E k[xo,, . . ,x,,] be a linear form 

which is not a zero-divisor module I. Then there exists mg such that 

and 3degIimoi5ddegI. 

Proof. Let 6 : = deg I, k : = 36, 1: = 26, m : = 5d6. We aim at proving that 

m-j+d m-j+d-k 
l-l 

d - ) ( d 
L c h(l,s)(m - j). 

j=O 

We have that 

m+d-j 

d - )( 

m+d;k-j)}={ (m;+:l)_(m+~~:-l)} 

m+d+l-k 

)( 

m+d+l-k-l - 
d+l - d+l 
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holds. We also have that 

1-I 

c h(J,?# -A = &q’)(m) I 
j=O 

m+d+l-l )C m+d+l-6-Z) - 
dS1 - d+l )I 

holds, by application of Theorems 19 and 4. Then, it suffices to prove that 

m+d+l-6 

>-( 

m+d+l-b-f 

d+l d+l >) 

-I( m+d+l-k 

) ( 

m+d+l-k-l 

d+l - d+l 

We have that 

m+d+l-6 

)( 

m+d+l-6-f 

d+l - d+l 

m+d+l-k 

) ( 

m+d+l-k-l - 
d+l - d+l )I 

m+d+l-6-i 

)-( 

m+d+l-k-i 
= 

d d 

m+d+:_P-i-j) 21(n_a)(m+d;!;k-i) 

and 

{(m:~:“)-(~~~)}-{(m~~:‘)-(m+~Y)} 

m+d+&i 

)( 

m+d+l-i 
= 

d - d 

m+d+6-i-j 

) ( 
I d2 

m+d-1+6 

d-l d-l 
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hold, and thus it suffices to prove that 

This is clear when d = 1, as in this case, the right-hand side of this expression equals 1. 

When d 2 2 we have that 

and so our claim follows, and we conclude that 

for some mo such that 5d6 - 26 + 15 mo 5 5dS. 0 

Theorem 22. Let k be a perfect jeld, and let I C k[xo,. . . ,x,1 be an homogeneous 
unmixed radical ideal of dimension d, with d > 0. Let f E k[xo, . . . ,x,1 be a polynomial 
which is not a zero-divisor modulo I. Then 

h(u)(m) 5 degI, m 2 1, 

&Am) = 0, mk degZ+degf - 1 

zfd=O, and 

h(l,f)(m) I3 degf degl (“if; ‘> 

ifd>l and mL5ddegI. 

Proof. Let 6 : = deg I, do : = deg f. We have that h,,r,(m) = hi(m) - hl(m - do). Con- 

sider first the case d = 0. Then h,(m) 5 6 for m > 1 and hi(m) = 6 for m 2 6 - 1 by 

Lemma 3, and thus 

h(dm) = 0, m>d+do- 1. 

Now let d 2 1. We have that Ze is an unmixed radical ideal, and so there exists a linear 

form qEk[xo,..., x,] which is not a zero-divisor modulo le. By Lemma 21 

for some 3 deg I 5 mo 5 5d deg I. 
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Let m > 36. We then have that 

(“:“)( 
m+d;3degI) = g (m,+;;;) 

is the m-binomial expansion of 

m+d-3degI 

(“id)-( d )’ 

and so 

for m > mo by Macaulay’s theorem and Remark 2. We then have that 

k,j)(m) = hy~,f)(m) = c h(le,q)(m -3 L 3dOS 

j=O 

for m>5d6. 0 

3. Construction of regular sequences 

In this section we devote to the construction of regular sequences with polynomials 

of controlled degrees satisfying different conditions. Throughout this section k will 

denote an infinite perfect field. 

Let be given a homogeneous unmixed radical ideal I G k[xo, . . . ,x,J of dimension 

d > 0, and a homogeneous polynomial FE k[xo,. . . ,x,J which is not a zero-divisor 

modulo I. We shall show first that there exist homogeneous polynomials of con- 

trolled degrees fi , . . . , fn-d E I which form a regular sequence which avoids the hy- 

persurface {F =O}, i.e. such that no associated prime ideal of (j-1,. . .,fi) lies in 

{F = 0) for 1 <i 5 n - d. This result is an application of our bound for the Hilbert 

function of a generic hypersurface section of an unmixed radical ideal 

(Theorem 22). 

Lemma 23. Let I, P C k[xo , . . ,x,,] be homogeneous ideals, I unmixed radical of di- 
mension d, with d > 0, P prime of dimension e, with e 2 d. Let F E k[xo,. . . ,x,,] be 
a homogeneous polynomial which is not a zero-divisor modulo I. Then there exists 
gE(Z,F) - P such that 

deggI 
degI+degF- 1 ifd=O, 

5ddegFdegI ifdl 1. 
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Proof. Let 6 : = deg I, do : = deg F, J : = (Z, F). Consider first the case d = 0. Then 

by Theorem 22, and so there exists g E J - P with deg g 5 6 + do - 1. 

Now let d L 1. We have that P C k[xo, . . . , xn] is a homogeneous prime ideal of 

dimension e 2 d, and so 

hp(m)L (“le)>(“:“). 

Let mo : =5ddo6. We then have that 

h(r,f)(mo) 5 3&d (““dd; ‘> <(“Odd) <hp(m) 

holds, by Theorem 22, and so there exists g E J - P such that deg g 5 mo. 0 

Theorem 24. Let I C k[xo,. . .,x,1 be an unmixed radical ideal of dimension d, with 
d 10, and let F E k[xo, . . .,x,1 be a homogeneous polynomial which is not a zero- 
divisor modulo I. Then there exist homogeneous polynomials fi, . . . , fn-d E I such 

that F, f, ,..., fn_d Ek[xo ,..., x,] is a regular sequence and 

degI+degF - 1 ifd=O, 
degfi I 

5d deg F deg I tfd> 1. 

Proof. We show first that there exist homogeneous 

(I, F) such that F, 91, . . . , gn-d is a regular sequence and 

deg gi L 
degZ+degF-1 ifd=O, 

5d deg F deg I ifd>l. 

We proceed by induction. By Lemma 23 there exists g E 

the stated bound. 

polynomials 91,. . . , gn_d E 

(I, F), g # 0 which satisfies 

Now let 1 Ijln-d-l, andlet gt,..., gj E (I, F) be homogeneous polynomials satis- 

fying the stated bound on the degrees and such that F, 91,. . . , gj is a regular sequence. 

Let 

and let P be an associated prime ideal of Jj. The ideal Jj is unmixed, and so dim P = 
n - j - 1 2 d. Then there exists gp E (I, F) - P which satisfies the stated bound on the 
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degrees by Lemma 23. By eventually multiplying each gp by a linear form which is 

not a zero-divisor module P we can suppose that 

deg gp = 
degI+degF- 1 if d=O, 

5d deg F deg I ifdzl. 

As the field is infinite, there exists a k-linear combination g := ‘& lpgp such that 

g E (Z, F) - P for every associated prime ideal of Jj, so that g is a homogeneous 

polynomial and F, 91,. . . ,gj, g is a regular sequence of polynomials satisfying the 

stated bounds on the degrees. 

Let gi=fi + Fhi with f;:~l for 1 <i<n -d. Then degf;= deggi, and gi__ 

mod(F), and so F,fi,. . , fn-d is also a regular sequence for which it holds the an- 

nounced bounds on the degrees. 0 

We observe that in the case when deg F = 1, Lemma 23 can be deduced from 

Lemma 21, and so Theorem 24 does not depend on Macaulay’s theorem. It can also 

be shown in the case when deg F 2 2 that it does not depend on Macaulay’s theorem 

altogether [32, Theorem 3.401. 

Definition 25. Let A be a ring. Then ft,. . . , f3 E A is a weak regular sequence if j is 

a nonzero divisor in A/( j-1,. . . , _f_ 1) for 1 < i < s. 

This definition differs from the usual definition of regular sequence only in one point, 

namely in that we allow J’s E A/(fi, . . . , &_I ) to be a unit. 

Let F, f,,..., fs E k[q, . . . ,x,1 be homogeneous polynomials such that fi, . . . , fs E 
k[xo,. ,x~],c is a weak regular sequence. It is not always the case that fi,. . ., fs E 
k[xo,. . ., x,] is a regular sequence, as some components of high dimension may appear 

in the hypersurface {F = 0). Consider the following example. 

Example 26. Let d 2 1, and let 

fl :=x1, fi := .:+I +x2x& fJ := .p+* +x3x; E k[xO,xl,x2,x3]. 

Then f2 =xp$, f3 =x,x: mod (fi ), and so they form a regular sequence in k[xo,xl, 
x~,x~],P. We have that 

{(xc:... :xrl)EP31xo=0, xl=0)~w-i,f2rf3)C~3 

and so fi, f2, f3 cannot be a regular sequence in k[xo, . . . ,x3]. 

We shall show that the weak regular sequence f,, . . . , fs E k[xo,. . . ,X,&T can, in 

fact, be replaced by polynomials ~1,. . . , ps E k[xo, . . . ,x,,] of controlled degrees such 

that (fi )...y f;:)=(p1)...) pi)zk[xo ,..., xn]F for l<i<s and such that PI,..., psc 

k ho , . . . ,x,1 is a regular sequence. Our proof follows DubC’s arguments, who gave an 
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incomplete proof of a similar statement [ 11, Lemma 4. l] under an unproved assumption 

on the Hilbert function of a certain class of ideals [ 11, Section 2.11. 

Proposition 27. Let s 5 nf 1, and let F, f,, . . . , fS E k[xo, . . . ,x,] be homogeneous poly- 

nomials, with deg F > 1, such that f,, . . . , fS E k[xo, . . . ,x,],P is a weak regular sequence 

and such that (fi,. . .,fi) E k[xo,. . . , X,]F is a radical ideal for 1 5 i 2 s - 1. Let Zi := 

(fl,..., fi)Ck[xo,..., X,]F and let 1: := Ii n k[xo,. . . ,x,1 for 1 5 i 5s. Then there 

exist homogeneous polynomials ~1,. . . , pS E k[xo,. . . , x,] which satisfy the following 
conditions: 

(i) pi =FC’ fl, p2 = FCZ f2, pi s FC1fi mod If_, for some ci E Z, for i = 3,. . . ,s. 

(4 P~,...,P~E~[~o,..., x,] is a regular sequence. 

(iii) degpSmax{degfi,5(n + 1 - i)degFdegZz!_,} if iln, and deg~,+~< 
max {deg fn+i,degZ,’ + degF - l}. 

Proof. We shall proceed by induction. Let fl = Felal, f2 = Fe2a2, with F[al, F[az. 

Then fl, fi is a weak regular sequence in k[xo,. . .,X,&T if and only if ai # 0 and 

(ai:az)=l, and thus 

p1 := F+’ fl, p2 := F-e2 f2 

is a regular sequence in k[xo,. . . , x,]. Now let i 2 3, and suppose that ~1,. . . , pi-1 are 

already constructed with the stated properties. Let 

and let Li_r = nlzl Qj be an irredundant primary decomposition of Li_1 such that 

F$& for lijlr, 

FE& forr+lljFt. 

Let (Li_1) denote the extension of Li_i to the ring k[xo,...,x,]F. Then (Li_i)=Zi_i 

and so 

I2c_1 =nQj 
j=l 

is a primary decomposition of Il?_l. We have $, = (1) or dimI,?_, = n - i + 1. In any 

case, there exist bl, . . . , bi- 1 E Zp_l homogeneous polynomials such that F, bl, . . . , bi- 1 

is a regular sequence and such that 

degbj=max{degh,S(n+l-i)degFdeglf_i}, l<jli-1 

if i 5 n and 

degbj= max{degf,+i,degZ,C+degF - l}, 1 <j<n 
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if i = n + 1, by application of Theorem 24 and by eventually multiplying each bj by 

an appropriate linear form. Let 

i-1 

u; := c Ajbj E If-1 
j=l 

be a k-linear combination of the bj. We shall prove that a generic choice of At,. . . , Ai_, 

makes p; := FC’A + U; with c; := degu; - degf; 2 0 satisfy the stated conditions. 

We have that 

degp;=max{degf;,5(n+ 1 -i)degFdeg$_,} if i<n 

and 

degp,+l =max{degf,+t,degZi +degF - 1). 

hold. We aim at proving that p; does not belong to any of the associated prime ideals 

of L;_t. 

Consider first 1 5 j < Y. Then J;: @& as J; . IS a nonzero divisor modulo Z;_t . We 

have that U; E If_ 1, and SO p;=FCiJ;+u;$&. 
Now let r + 15 j 5 t. Then dim Qj = 12 - i + 1 as L;_t is an unmixed ideal of 

dimension n - i + 1, and we have also that F E,@~. Thus there exists 1 5 I 5 i - 1 

such that 6; @flj, and so p; 4 flj for a generic choice of the 11,. . , , b, I._,. 0 

As a corollary, we deduce that if we have a weak regular sequence fi, . . . , fS E 
k [x1,. . ,x,1 of affine polynomials, we can replace it by another weak regular sequence 

tn;‘-‘ 

9 Ps E 4x1 , . . . ,x,] with polynomials of controlled degrees such that (fl, . . . , J) = 

1,. . , , pi) for 1 5 i 5s and such that the homogenizated polynomials 3,). . . , jjs E 

Ha,. . . ,x,] form a regular sequence. 

Corollary 28. Let fi , . . . , fS E k[xl , . . . ,x,,] be a weak regular sequence of afine poly- 
nomials such that (f,, . . . , fi) C k[xl ,...,x,] is a radical ideal for 1 <i<s - 1. Let 

1; :=(fl,...,f;>Gk[xl,. . . ,x,,] for 1 I i < s. Then there exist polynomials pl,. . . , pS E 
k [xl, . . ,x,1 which satisfy the following conditions: 

(i) pl=fi, p2=f2, pi- f;modZ;_l for i=3 ,..., s. 
(ii) j,, . . . , p, E k [x0, . . . ,x,] is a regular sequence. 

(iii) deg p; 5 max{deg f;,5(n + 1 - i)deg&_t} if i < n and degp,+l = 

max{degf,+l,deg&}. 

Proof. We have that fi, . . , fs E k[xl, . . . ,x,] is a weak regular sequence, and so ft , . . . , 
f,Ek[xo,...,x,,l, is also a weak regular sequence. We have also that (f;, . . , fi) C 
k[xo,. . .,x& is a radical ideal for 1 _< i 2 s - 1. Let rl,. . . , r, E k[xo,. . .,x,1 be the 
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homogeneous polynomials we obtain by applying Proposition 27 to f;, . . . , x. Let 

pi I= Y’ p, I<i<s - 

Thus, deg pi 5 degri, and x: pi = ri for some ei >_ 0. Then jr,. . . , j, E k[xo,. . .,x,,] is 

a regular sequence, and so ~1,. . . , pS satisfy the stated conditions. q 

Our bounds for the degrees in the preceding propositions depend on the degree of 

certain ideals associated to ft , . . . , fs. The following is a Bezout-type lemma which 

shows that these bounds can also be expressed in terms of the degrees of the polyno- 

mials fr,...,fS. 

Lemma29. LetsIn,andletF,f, ,..., f$Ek[xo ,..., x,,] be homogeneous polynomials, 

with degF 2 1, such that f, , . . . , fS E k[xo, . . . ,x,,]F is a weak regular sequence. Let 
I := (fi ,..., fS) C k[xo ,..., x,]F, and let I’ := I n k[xo ,..., xn]. Then 

degIC I fidegfi. 
i=l 

Proof. If 1’ = (1) there is nothing to prove. Otherwise we have that dim I’ 2 0. 

Letli := (fi,...,h)Ck[xo , . . . ,x,]F, Ji := (llF_l, fi) C k[xo,. . . ,Xn] for 1 < i <s. Then 

dim If = dim Ji = n - i and Ji 2 If, and SO degZ,C < deg Ji. 
We shall proceed by induction on i. For i = 1 we have that deg IF 5 deg J1 = deg fi 

holds. 

Let i 12. Then h is a nonzero divisor modulo If_, and so 

deglf 5 degJi = degf, degI,‘_, I fidegf, 

j=l 

by the inductive hypothesis. 0 

4. The effective Nullstellensatz and the representation problem 
in complete intersections 

In this section we consider the problem of bounding the degrees of the polynomials 

in the Nullstellensatz and in the representation problem in complete intersections. 

As a consequence of the results of the previous section we obtain bounds for these 

two problems which depend not only on the number of variables and on the degrees of 

the input polynomials but also on an additional parameter called the geometric degree 

of the system of equations. The bounds so obtained are more intrinsic and refined than 

the usual estimates, and we show that they are sharper in some special cases. 

Our arguments at this point are essentially the same of Dub& [ 111. 
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The bound we obtain for the effective Nulltellensatz is similar to that announced in 

[ 15, Theorem 191 and proved in [ 141 by algorithmic methods and to that obtained in 

[24] by duality methods. 

Let g,f,, . . . ,fs E k[xl,. . . ,x,] be polynomials such that g E (fi,. . , fs). Let D > 0. 

Then there exist polynomials al,. . . , a, E k[xl, . . . ,x,J such that 

g=alfi +...+a,_6 

with degaif;: degg+D for i=l,...,s if and only if 

and so in this situation we aim at bounding D such that x[i E (f;, . . . , fi). 
We shall suppose ~2,s 2 2, as the cases n = 1 or s = 1 are well known. Also we shall 

suppose, without loss of generality, that k is algebraically closed, and in particular 

infinite and perfect. 

Let h 1,. . . , h, E k[xl, . . ,x,J be a weak regular sequence such that (hl,. . . , hi) is radi- 

cal for 1 5 i _< s - 1. In particular, we have that s 5 n + 1. We fix the following notation: 

Ji :=(~_,,j;i)Ck[xo,...,xn], 

for 1 < i 5 s. Let J, = & Qp be a primary decomposition of A, and let 

J: = (7 QP 
P : dim P=dim I 

be the intersection of the primary components of maximal dimension of Ji, which is 

well defined as the isolated components of Ji are unique.We have that Ji C Ji* c 4. 
Let 

yi := 0, 

Yi :=deghidegJ_i -deg&, 2<i<n, 

%+I := degh,+l + degj,, - I, 

Lemma 30. Let g E & for some 15 i 5 s. Then we have that xoy’g E JF holds. 

Proof. The case 1 5 i 5 n is [I 1, Lemma 5.51. 
We consider the case i = n + 1. We have that I, C k[xo, . . . ,x,1 is an unmixed radical 

ideal of dimension zero and we have that hn+, is not a zero-divisor modulo I,,, and 
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SO by Theorem 22, AA+, Cm) = 0 for m 2 degfn + deg hn+, - 1. Then x:+’ E J,,+, c J,*,, 

and thus $+‘g E Jn+,. 0 

Then we apply Corollary 28 to the sequence hl , . . . , hs, to obtain polynomials pr, . . . , 

P~E~[x,,...,x,] such that 

(i) pl =hl, p2=h2, and pi=hi +ui for some ui EI~_1, for 3 <i<S. 

(ii) &,..., j, E k[xs,. . .,x,1 is a regular sequence. 

(iii) deg pi 5 max{deg hi,5(n + 1 - i)degJ_t} for 1 <_ i < n and deg pn+l 5 

max{deg h,+,, degf,}. 

Then Fi=x:iZi+Gi9 with ~1 =O ~2 =0 and ci = max {0,5(n+ 1 -i)deg<_l -deghij 

for 31iIn, and c,+t =max{O,deg& -degh,+,}. Let 

i i-l 

Di:=C(i+l-j)ri,+C(i--j)Cj 

j=2 j=3 

for lIi<s. 

Lemma 31. Let g E 5 for some 1 < i 5 s. Then we have that x:g E Hi holds. 

Proof. This proposition follows from the proof of [l 1, Lemma 6. I] and [I 1, Lem- 

ma 6.21, applying Lemma 30 for the case i = n + 1. 0 

Now the task consists in bounding 0,. Our bound will depend not only on the 

number of variables and on the degrees of the polynomials hl, . . . , h,, but also on the 

degrees of some homogeneous ideals associated to them. 

Lemma 32. Let d := maxt<i<sdcghi and 6i := deg& for 1 <i<s. We then have _- 
that 

D, 5 min{s,n}*(d + 3n) max 6i 
1 <i~min{s,n}-1 

Proof. Let di := deg hi for 1 5 i 5 s. We have that 

s-l s-l 

C(S-j)cj = C(S-j)max{0,5(n+l-j)6,-1 -dj} 

j=3 j=3 

s-1 

I 5(n - 2) 

i I-- C 6 - I7 , <y::_2 6i 

j=3 

5 3(n - 2)(S - 2)2 max 6i 
I <i<s-2 
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holds. Let s In. We then have 

Cts+ l -j>Yj = C(s+l -j)(dj6j_1-Sj) 

j=2 j=2 

Thus, 

0, I s2d, <m”t_ hi + 3(n - 1 2)(~ - 2>2 hi 1 ,T$%_~ 
- - _ - 

5 s2(d + 3n) max 6i. 
1 <i<s-I - - 

Also, we have that 

n-t1 

C(n+2-j)yj=~(n+2-j)(dj~j_l-~j)+d,+l +6,-l 
j=2 j=2 

holds, and, thus, 

D n+~ 5 n2d max 
I <i<fl-I 

6i + 3(n - 2)(n - 1)2, p~_~ 6i 

_< n2(d + 3n) max 6i. 0 
1 <i<n-1 

Let k be an arbitrary field, and let be given fi , . . . , fs E k[xl , . . . ,x,] polynomials 

which define a proper ideal (f,,...,fs)Ck[xl,...,x~] ofdimension n--s or 1 l (fi,..., 
fs). Then there exist hl,. . . , h, k-linear combinations of the polynomials {h,xif; 1 

l<i<s,l<j<n}, and an integer t<s such that 

0) (Al >. . . > h,)=u-l,...,f,). 

(ii) h, . . . , h, is a weak regular sequence. 

(iii) (hly...,hi) is a radical ideal for 1 <i<t- 1. 

In the case when k is a zero characteristic field, we can take hl,. . ., h, as i-linear 

combinations of j’i , . . . , fs. In fact, in both cases a generic linear combination will 

satisfy the stated conditions. This result is a consequence of Bertini’s theorem [21, 

Corollary 6.71 (see, for instance [30, Section 5.2; 23, Proposition 37]), and allows us 

to reduce from the general situation to the previously considered one. 
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Letd:=maxi~i~,degfi,andsupposethatdegf;>degJj+l for l<ils-l.Then 

in the case when k is a zero characteristic field we can take h,, . . . , ht such that 

degh< degf;:, 1 <i<t 

and deg hi < d + 1 in the case when char(k) = p > 0. 

Definition 33. Let k be a zero characteristic field and let j-1,. . . , fs E k[xl, . . . ,x,1 be 

polynomials which define a proper ideal (fi, . . . , fs) 2 k[xl, . . . ,x,1 of dimension n - s 
or such that 1 l (fi,...,f,). For A=(.A,),EkSXS and 1 <i<s let 

be k-linear combinations of f I,. . . , fs. Consider the set of matrices r 2 kSxS such 

that for A E r there exists t = t(l) 5 s such that (gi,. . . ,gt) = (f,, . . . , fs), gl,. . . ,gl is 

a weak regular sequence and (gl , . . . , gi) G k [x0 ,...,x,]isaradicalidealforl<iIt-1. 

Then r# 0, and in fact r contains a nonempty open set U c ksx! Let I$(,%) := 

V(gi , . . , gi ) 2 A” be the affine variety defined by gi , . . . , gi for 1 5 i 5 s, and define 

6(i) = max 
1 5 i 2 min{t(A),n}-1 

deg I$(,?). 

Then the geometric degree of the system of equations f,, . . . , fs is defined as 

S(fl,...,fs> :=q$ h(i) 

In the case when char(k) = p > 0 we define the degree of the system of equations 

f,, . . , fs in an analogous way by considering k-linear combinations of the polynomials 

fly..., fsJlf1 2.. . Afs. 

This definition extends [24, Definition l] to the case of a complete intersection ideal. 

It is analogous to the definition of degree of a system of equations of [ 151, though 

this degree is not defined as a minimum over all the possible choices of A E r but by 

a generic choice. 

Remark 34. We see from the definition that the degree of a system of equations 

fl , . . . , j,, does not depend on invertible linear combinations, i.e. if p = (pij)ij E GL,(k) 

and 

for 1 <i<s, then S(fi ,..., fs)=6(gl ,..., gs), and so this parameter is in some sense 

an invariant of the system. 
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The following lemma shows that S(ft , . . . , fs) can be bounded in terms of the degrees 

of the polynomials ft , . . . , fs. 

Lemma 35. Let fj,. . ., fs E&q,. . ., x,,] be polynomials which define a proper ideal 

(fl,...,fs)c~[~l,..., x,] ofdimensionn-s,or lE(fi,...,f,). Letdj:=degfi and 
d := maxt 5 i 5 s di, and suppose that di 2 di+z for 1 < i _< s - 2. Then 

min{s,n}-I 

&fl,..., .A)< n 4 
i=l 

in the case when k is a zero characteristic field, and 

a,...> fS) 5 (d + l)min{s+l 

in the case when char(k) = p > 0. 

Proof. This follows at once from Lemma 29. 0 

We have the following bounds for the representation problem in complete intersec- 

tions and for the effective Nullstellensatz in terms of this parameter. 

Theorem 36 (Representation problem in complete intersections). Let s 5 n, and let 

fly.. . > f,Ek[xl,..., x,] be polynomials which define a proper ideal (f,, . . , fS) g 

k[xl,. . .,x,1 of dimension n - s. Let d := maxi <i sS degh, and let 6 be the geo- 
metric degree of the system of equations f,, . . . , fS. Let g E (fi,. . . , f$). Then there 

exist polynomials al, . . . , a,Ek[xl,...,x,,] such that 

g=alfi +.-.+a,f, 

with dega,fi<degg+s2(d+3n)6 for i=l,...,s. 

Proof. This follows from Lemmas 31 and 32. 0 

Theorem 37 (Effective Nullstellensatz). Let fi, . . . , fS E k [XI, . . . ,x,1 be polynomials 

such that 1 E(fi,..., fS). Let d := maxt <i cS deg ft, and let 6 be the geometric 
degree of the system of equations fi, . . , fS. Then there exist polynomials al,. . , , a, E 

k[xl , . . . ,x,1 such that 

l-alfi +...+aSfS 

with dega,fi< min{n,s}2(d+3n)6 for i=l,...,s. 

Proof. This follows from Lemmas 31 and 32. Cl 
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We can essentially recover from Theorems 36 and 37 the usual bounds for the repre- 

sentation problem in complete intersections and the effective Nullstellensatz. We have 

for instance: 

Corollary 38. Let k be a zero characteristic field and let fi, . . . , fS E k[xl, . . . ,x,1 be 

polynomials such that 1 E (fl, . . . , fS). Let di = deg fi and d := maxi < i cs di, and sup- - - 
pose that di 2 di+z for 1 < i 5 S. Then there exist polynomials al,. . . ,a, E k[xl,. . . , 

x,] such that 

with deg aifi 5 min{n,s}2(d + 3n) ~~~~n’S}P1 dj for i = 1,. . . ,s. 

We remark that our bounds for these two problems are much sharper than this 

estimate in some particular cases. Consider, for instance, the following example. 

Example 39. Let k be a zero characteristic field and let hl,. . . , h, E k[x,, . . . ,x,1 

be a weak regular sequence of polynomials such that 1 E (hl,. . . , h,). Let d := 

maxl<;<,deghi, and let fi ,..., f,Ek[xl,..., x,] such that 

fi = hi + Ui 

with uiE(hl,...,hi_,) for 1 <i<s. Then 

6 := S(fi,. . . , fS) = 6(hl,. . . , h,) 5 dmin{n,s)-l 

Let D := maxi 5 i ss deg fi. By Theorem 37 there exist polynomials al,. . . , a, E 

k[xl , . . . ,x,] such that 

l=alfi +...,a,f5 

with deg aifi 5 min{n, s}2 (D + 3n)d min{n,s}-’ for i = 1,. . . , s. This estimate is sharper 

for big values of D than the bound 

degaifi<Dmi”{“‘S}, i= l,...,s 

for D > 3, which results from application of the bound of [22]. 
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